Facilities Management – Moving in Tandem with Technology

The old paradigm of Facilities Management (FM) is viewed primarily as a maintenance focused field, with FM team running on regular team schedule, and the use of nuts and bolts to rectify faults and breakdowns. This model has since evolved with technological advancements making great strides, having the ability to aid the facilities manager in carrying out his duties more efficiently.

The facilities manager needs to stay updated with current innovations and be prepared for digital transformation. The reality is that buildings are increasingly intelligent, all affixed with softwares, sensors, and even artificial intelligence developments.

This shift is being motivated by the convergence of a few key factors:

  • Internet of Things (IoT) in FM
  • Advanced HVAC Technology
  • Drones in FM
  • BIM for FM

The Internet of Things (IoT) in Facilities Management

In the FM sector, IoT refers to the network of internet accessible devices used by a building/facility. It relies on tools such as sensors and thermostats to evaluate data, thereby reducing the amount of energy used for each FM task. Each sensor picks up data in a building to better inform the FM team on current temperature, number of people utilising certain areas, light, vibration or even sound levels in different areas of a building.

A smart FM system is capable of interacting with the occupants and designing preventive or predictive systems for building owners. For example, organisations that provide cafeteria service for a large staff, can display a sensor system capable of detecting the amount of clean trays stacked on the shelves, so that cooks are able to find out if more food needs to be prepared.

The example of IoT is better described using the human anatomy. With better communication between the sum of different body parts, it yields better results for a healthy person with a fully functional body system. In the case of using IoT systems, it can potentially reduce total energy bills, and provide insightful data to improve the entire value chain of a building.

The Lifelong Learning Institute (LLI), where it is home to state-of-the-art vertical green walls that run on an automatic irrigation system is an example on the use of sensors (in this case to measure water levels) to evaluate data. This is where Surbana Jurong’s FM site team works alongside building owner, to devise a schedule that holds records on balanced water supply, ensuring that the plants are acclimatised to the unpredictable weather, and are properly hydrated. (Please refer to Diagram 1 for the vertical green walls with automatic irrigation system)

An Energy Management Programme was initiated with LLI building tenants to help them reduce carbon footprint through energy reduction. The team was able to do this by individually customising the air-con operating hours of in-house tenants, so they will automatically switch on/off during business hours. LLI has also started the use of Smart Building Management System, which works on a single platform to control various mechanical and electrical systems in the building.

The use of automation such as Robotic Cleaners, Automated Mobile Floor Scrubbers, and Customer Service Kiosks, not only improve efficiency level, there is also a significant reduction in the need to employ more cleaning staff.

Lifelong Learning Institute
Diagram 1: Lifelong Learning Institute with vertical green walls (building façade and internal walls) that run on automatic irrigation systems.

Advanced HVAC Technology

We know that the HVAC system is expensive to use and maintain in large facilities. And building owners are armed with the objective to reduce cost of heating and cooling a facility, while also reducing environmental footprint. Advancements in HVAC facility management technologies and Building Automation Systems (BAS) have come a long way in reducing FM costs, which also provide building owners the opportunity to prevent costly equipment failure by solving problems, ie preventive maintenance, before they occur.

In the last couple of years, technology and the implementation of “Green” ideas have prompted some transformational changes in HVAC systems. The Hive @ National Technological University of Singapore (NTU) first adopted and implemented the Passive Displacement Ventilation (PDV) technology, with the assistance of Surbana Jurong’s FM team in their maintenance efforts. PDV is a method of cooling a room where no fans are required, resulting in the elimination of vibration and noises from the supplied air flow. The building is equipped with special metal coils with cold water flowing through them. This cools the wind which enters the classroom and removes hot air via convection. In addition, the openings between pods allow for natural ventilation to the atrium, corridors, staircases, and lift lobby. As PDV does not contain mechanical parts, the likelihood of faults and breakdown is reduced significantly. Manpower needed for maintenance is also decreased, as it only involves vacuuming and draining the system. In the following years, approximately half of NTU’s campus space will be retrofitted with PDV.

Surbana Jurong’s FM team has also proposed and assisted NTU to implement several energy savings strategies for its Air-Conditioning & Mechanical Ventilation (ACMV) systems. These notable energy saving strategies based on a two-pronged approach have helped NTU achieve the required energy efficiency for the BCA Green Mark Platinum Award.

Drones in Facilities Management

Drones, or unmanned aerial vehicles, bring about incredible opportunities for improved efficiency in FM. They are set to revolutionise the way FMs work. Access equipment such as aerial work platforms, scaffolding and lifts is expensive, but is necessary to inspect rooftops and other hard-to-reach areas. It is also time-consuming to build and put in place, and then to tear down. Drones, on the other hand, allow inspections of areas that are difficult to access or dangerous to monitor, saving time and keeping workers safe. JTC Corporation, in which Surbana Jurong provides services & support for its industrial projects, uses drones to carry out trial and façade inspections.

The speed of collecting data is another huge benefit for FMs who use drones. It is not just money saved in man hours, it is also money saved through getting equipment back in place sooner than later.

BIM for Facility Management

Building Information Modelling (BIM) is a method of creating and using coordinated computational information about a building project in design, construction and operation. It is gaining traction around the world, presenting new methods of analysing models in ways that were not previously possible.

BIM takes on different meanings to different stakeholders – it is based on the different requirements and objectives across the entire building lifecycle. Architects can analyse designs and look at more design iterations earlier in the process, and provide basic rendered models faster to help communicate design intent. Engineers can understand how their systems will affect building design, operation requirements, sustainability and cost. Construction teams can use BIM model for time and cost management in the fabrication and assembly process. Facility Managers can have 3D visualisation from the geometry model of the design, and both the model and data can be ported into FM systems to better manage the building.

Conclusion

The demands of constantly building the most technologically advanced FM systems and automation is prevalent in keeping pace with the growth of global economy. Integration is key to streamlining processes, and the involvement of FM at every stage of building plan, design and construction is crucial

The role of the Facilities Management team, in a nutshell, also changes with time and ever-evolving technology. The FM team now plays a more involved role in co-managing/partnering a facility. While the delivery of service quality to clients remains a top priority, the ability to co-manage a facility cohesively and successfully, together with the building owner, is a skill which may not be trained.

In an organisation like Surbana Jurong that offers the full suite of urban planning, construction and maintenance, the Facilities Management team or the “Heartwares” behind it, is truly the backbone that will withstand the building’s test of time – making it operationally viable, and sustainable.

This article is co-created by Surbana Jurong Academy.

Perspectives, developed by SJ Academy, is our platform to explore new ways of tackling some of today’s most complex challenges. We draw on ideas and opinions from our staff associates and experts across different businesses. Click here to read more about the Workplace of the Future, Urban Development, and Water Management.

Beyond Software: Are We Ready for Construction’s Digital Transformation?

Transforming the construction sector to take advantage of the opportunities presented by digital technologies is a global challenge. Singapore has a vision to meet this challenge, but is the industry prepared for the scale of change required?

Introduction

The use of digital technologies is transforming the global construction industry. New data-led tools and processes are available with the capacity to boost productivity in design and construction and are already enabling new levels of efficiency and collaboration across the supply chain.

Singapore’s Building and Construction Authority (BCA) is embracing this opportunity and responding to other global challenges such as climate change and rapid urbanisation with its recently launched Construction Industry Transformation Map (ITM). This intends to power Singapore’s construction industry into the modern world by supporting supply chain skills to underpin competitiveness.

The widespread use of Integrated Digital Delivery (IDD), as illustrated in diagram 1, is one of three key initiatives driving the transformation announced by BCA on 24th October 2017. IDD sits alongside the adoption of Design for Manufacturing and Assembly (DfMA) techniques and the development of Green Buildings as key investments that the government hopes will radically change Singapore’s approach to construction.

Yet this transformation is a global challenge. As such, BCA’s ITM initiative looks to support existing home-grown design and management systems expertise and position Singapore’s industry ready to compete across other international economies. Changes to the syllabus taught in Institutes of Higher Learning (IHL), should see some 80,000 personnel trained to create a new national skill base ready to tackle these critical global challenges.

Integrated Digital Delivery
Diagram 1: Scope of Integrated Digital Delivery (IDD) – Credit source: Building and Construction Authority

Putting Integrated Digital Delivery at the Heart of Construction

Integrated Digital Delivery describes the use of digital technologies to integrate all processes and stakeholders throughout the construction lifecycle. It is a process which, using cloud-based technologies, enables a single, up-to-date source of project data to be accessed by all.

The adoption of Building Information Modelling (BIM) is the key to the success of IDD, enabling all parties and stakeholders to collaborate using advanced info-communications technology (ICT) and smart technologies.

However, there are also many design and dimensional uses of digital technologies and IDD encourages and enables information sharing while also reducing the risk of error and duplication. Technologies that underpin this delivery include:

  • The use of Building Information Modelling (BIM) and all its different dimensions such as 4D time and scheduling, 5D cost management, 6D asset management and 7D simulations;
  • Coupling peripheral technologies such as using drones for inspections;
  • Virtual, mixed, immersive, and augmented reality for visualisation;
  • Computational science to analyse data and optimise or even solve design challenges.

The BCA’s ITM puts these technologies at the heart of construction’s transformation to deliver more sustainable design and construction practices.

Making the Case for Digital Change

One of the biggest global challenges facing the construction sector as it prepares for digital transformation is overcoming the inherent social resistance to the use of new technologies. In such an established and conservative sector, establishing a robust plan for change is essential.

The move away from 2D design to embrace technology started with 3D Computer Aided Design (CAD). More recently, the widespread adoption of BIM has caused a major shift in thinking, practice, and process across the sector.

The shift towards the use of centralised cloud-based data storage as the foundation of Integrated Digital Design presents new challenges for a sector used to working locally. It will require industry professionals to adopt an open mind and to thoroughly question what and how processes should be changed to maximise potential gains.

Embracing this change should also include work to identify the potential gaps in knowledge or any immediate practical issues that might arise from the use of a cloud based system. Staff will need to be trained to embrace this new world.

Helping a generation accustomed to existing technologies and processes will require focus to steadily change their mind-set towards the use of new technologies and new ways of working. Awareness of the likely immediate impact on staff motivation is vital along with establishment of a change management programme designed to break down any barrier to adoption.

A New Approach to Design

The use of the powerful shared modelling, design and visualisation technologies are central benefits of Integrated Digital Design processes. They provide clients and developers with more options to interrogate and virtually “see” finished designs, and provide designers with an excellent opportunity to showcase and contrast a range of design options and considerations.

Significantly, this ability to rapidly assess multiple options across the design process, provides commercial opportunities. In effect, the firm capable of designing and demonstrating the best value solutions, with the best options and design, should be better positioned to win the job.

Diagram 2: Planned 4D-BIM vs Actual Progress (Project: Wisteria Mall, Mixed Use Development at Yishun Avenue 4, Singapore)

As a result, we also now see IDD, and in particular the use of 4D (as seen in Diagram 2 – the use of 4D BIM for design and consultancy works for Wisteria Mall in Yishun) and 5D BIM, driving a new approach to design in which construction and constructability is kept top of mind. This so-called Construction-Led-Design (CLD) boosts efficiency by integrating the design and construction process, preventing contractors from having to redesign proposals to suit their specific methods or working preferences.

Inevitably the sector will shift more and more towards this CLD approach as developers quickly realize that in a world of high land prices requiring quick product-to-market times, such techniques will improve yield, rates of return and profitability.

Embracing IDD processes should also underpin greater use of off-site fabrication and Design for Manufacturing and Assembly (DfMA – as seen in Diagram 3) principles to create a win-win across construction – from the client down through the supply chain. And from Singapore’s national economic perspective, this approach will improve productivity as measured by the Ministry of Trade and Industry (MTI).

Diagram 3: Design for Manufacturing and Assembly (DfMA) concept using Prefabricated Volumetric Construction (PPVC)

Unleashing the Power of Collaboration

Singapore’s ITM vision also called for greater collaboration across the construction supply chain, in the way that contracts are set out. The use of IDD is central to delivering this vision.

Traditional contracts can be adversarial, setting firms head to head with clear winners and losers. In contrast, collaborative contracts such as, for example, the New Engineering Contract, take a fairer approach; sharing information and working with a blameless culture.

The increased use of IDD in Singapore will inevitably accelerate the move towards more such collaborative contracts. But it will also prompt new roles in the industry, roles that help facilitate collaboration and help to avoid and/or decide on disputes faster so that the project can move on.

This change will require a new breed of professionals with facilitation and coaching skills to help foster better communication between the project team members. These individuals will not only have to be proficient in contracts, mediation and facilitation, but also have the technical skills to spot potential issues early.

The move to embrace digital technology will also change the way that construction professionals interact, with office spaces changing to accommodate tele-conferencing and virtual reality workshops. Co-location will be commonplace in construction teams and so-called WAR (Work Action Resolution) Rooms will enable geographically separated teams to collaborate and interact virtually.

Choosing the Right Hardware and Software

As the construction sector embraces the new digital world, it becomes increasingly important that professionals understand and manage the impact of their software and hardware choices and the associated costs.

The market for construction-focused hardware and software has grown rapidly. For example, in the virtual reality field, there are already a multitude of solutions available based around products such as the Microsoft HoloLens and HTC Vive headsets and many other platforms exist to create bespoke Immersive Virtual Reality Rooms. Each has its specific purpose, capital and operational cost, and maintenance regime which need to be thoroughly understood.

Similarly, there are also several types of collaborative platforms with different brands serving different purposes. Choosing the wrong software not only can be costly but may also cause users to dislike the software, taking them longer to embrace new work processes.

The Need for Education

Greater use of digital technology in construction has prompted a transformation in the way professionals are educated and a change to the subjects taught at universities and technical colleges.

Globally it is vital that industry works closely with academia to set out the requirements of a modern construction syllabus. With Singapore’s universities now adopting a mix of academic and practical learning, Institutes of Higher Learning (IHL) are increasingly seeking volunteers from industry to transfer their practical knowledge into education.

There is also an increasing trend for private and public-sector firms to create corporate laboratories in schools in which academics and practitioners sit together to resolve technical and management issues.

However, as more and more of engineering design becomes computerised and modelled, there are growing calls from industry for IHLs to focus on the basics and ensure that the foundations are taught well. Without these basic skills, the use of IDD process could propel the production of poor or even life-threatening designs.

Conclusion

The use of IDD will see future designs optimised, with buildings hosting a wide array of high-tech Internet-of-things (IoT) sensors and monitors to improve building performance, boost the quality of life for occupants and aid facilities management.

Yet embracing the required change will not be straightforward for many in this traditional sector. Leadership is vital to embed new technologies into process management and to encourage the adoption of new working practices and tools by staff.

To maximise the opportunities that this change presents, industry must shape the sector to capitalise on the digital journey. That means making investment not only in the vital hardware and software tools necessary to embrace a digital future, but also in the education required to provide professionals with the right skills.

However, it is also clear that for construction to embrace its digital future, educators cannot overlook the teaching of core engineering knowledge. While digital process can certainly enhance design and communication, there will still be a vital need for human participation, leadership and engineering skill.

This article is co-created by Surbana Jurong Academy.

Perspectives, developed by SJ Academy, is our platform to explore new ways of tackling some of today’s most complex challenges. We draw on ideas and opinions from our staff associates and experts across different businesses. Click here to read more about Technology & Innovation, Infrastructure & Connectivity, and Design Leadership.

AUDIANCE: Towards Adaptive Applications

There is not a single aspect of the human experience that has not been touched by technology. Everything from industry, to construction and transportation, to how we work has been fundamentally reshaped by the technologies which emerged in the second half of the 20th century. In this section, we discuss the ease of conducting Audit Compliance checks using digitally empowered devices during site inspections, and how this virtual information can benefit users in the value chain.  

Mobile phones and tablets have become indispensable in our daily lives where we previously only communicate through text messages.  We now have our entire social networks living in the cloud with constantly changing status and content – from news, emails, to online retailing, and messaging applications that define ourselves.

The proliferation of mobile applications can be defined under two broad categories.  It allows users to either consume or to create content.  These applications can be standalone or reside on a service platform for users to do both where content can be shared to a wider audience.

Rise of Mobile Application

The beginning of the new millennium saw a rapid surge of mobile content and applications. Mobile@HDB – a mobile application developed by Housing Development Board, cleverly captures information pertaining to the resale flat prices, market rental rates, and car park information. All this is done at fingertip convenience.

Closer to heart, “OneService” is a Smart Nation initiative by the Ministry of National Development – providing a convenient channel for reporting municipal issues within Singapore. Public users may submit feedback such as cleanliness of their housing estate, and report defects & maintenance issues of the common areas they live in – all these will be efficiently attended to.

Mobile applications like these not only enhance user experience, but also increases operational productivity by capitalising on user generated feedback – to drive efficiency in addressing complaints, and thus responsiveness in attending to them.

Various applications for the construction industry have been developed, and they are mostly geared towards developers, contractors and consultants. These are enterprise grade applications that provide users anything – from document management, to whole project management suite that spans the entire spectrum of a construction life cycle.

AUDIANCEAn Adaptive Audit Compliance Application

While there are various applications built for large scale projects, there are a few that focus on the user and how they would like to use them.

Here is where AUDIANCE, an Audit Compliance (how the name was coined) application developed by Surbana Jurong, is designed to provide; it allows users to create their own forms in a standardised work flow format to monitor and analyse data captured.

AUDIANCE capitalizes the use of any tablet (iOS or Android) as a data acquisition device to capture and record audit details and synchronises the information back to the cloud.

Users can access the information captured and act upon them either through the tablet or a web interface to manage the audits made.

While AUDIANCE is suited for the construction industry, it can easily be adapted to any other industry, based on how a user defines the data that needs to be captured.

How AUDIANCE Works

Inspections are essentially audit compliance checks, and AUDIANCE simplifies the process by providing a platform to customise audit inspections based on the user’s requirements.  Imagine how life-changing it is to have the ability to create customised forms on a tablet, as opposed to manually writing on hard copies, printing, and distributing them to various other parties for follow-up and closure.  A lot of man-hours is saved from this single exercise.

There is a gamut of administrative tools available in AUDIANCE to facilitate the management of all users.

  • It allows auditors to upload drawings as a reference plan to pinpoint (indicated by coloured pins, as seen in Diagram 1) an audit location. And each audit location can be further described with photos, comments and even status updates to indicate “non-conformance” or NC;
  • It allows the uploading of multiple layout plans, and the overlay of details for each inspection point;
  • Audit details can also be assigned to respective users, auditors or auditees – for the purpose of addressing audit comments and access details of each NC indicated, and take corrective action to close the NC observed.
Diagram 1: Coloured pins to indicate “non-conformance (NC)” of an identified site/location.

Depending on the level of data captured, AUDIANCE can be used in the following manner:

Monitor performance of audit closure. All parties involved in the project – from architects, to building contractors, site supervisors and business owners can have seamless access to the status of NC closures after rectification works are done (please refer to diagram 2).

Assess quality of work across all levels of the value chain. Dashboards allow developers, contractors and consultants to determine the number of NC generated from each contractor.  Data can be drilled further for a granular assessment of performance and quality of work.

View live status of open, in-progress and closed audits. Changes and amendments can be made on or off-line and when there is internet connection, info-synching is available to everyone in the project.

Provide analytics on any performance indicators. The backend web interface allows customised analytics to be performed based on pre-defined performance indicators.

Diagram 2: AUDIANCE’s interface displaying details on requirements, and NC’s status closure after rectifications works are done.

Adaptation – Therein Lies Its Beauty

AUDIANCE works wonderfully as a quick deployment application – helping architects, engineers, building contractors and owners to view, monitor rectification works, and update progress on floor plans, based on real time capture. Once synced to the cloud, instantaneous changes are made on multiple devices with the latest updated information.

The beauty of AUDIANCE lies in its adaptability for users to define their own audit details in their respective work areas.  Potential usage can include hand-over inspections, ISO audits, safety audits, conventions & exhibition contractors, etc, and is not limited to the construction industry.

With digitisation, AUDIANCE not only helps save the environment and increases productivity, it also tangibly improves the quality of work through analytics of the data captured.

The Future of AUDIANCE

Many captains of technology are predicting that in ten years’ time, half the jobs known today will be replaced with the advancements in automation. Without a doubt, the ever-advancing march of technologies like robots, digital services, self-help kiosk and AI will continue to reshape the world economy.

Likewise, applications will have to evolve and reshape itself to suit the current needs. There are plans for AUDIANCE to widen and deepen its capabilities without sacrificing the simplicity in using them.  Further enhancements will also come from user generated feedback which will be incorporated in future versions.

An application such as AUDIANCE may not be an industry’s first but the flexibility and adaptability of the application places it in a unique proposition amongst similar applications.  It is said that the only known constant is change, and so there is an impending need to embrace these technology changes, in order for organisations to function in a more robust and forward thinking manner.

This article is co-created by Surbana Jurong Academy.

Perspectives, developed by SJ Academy, is our platform to explore new ways of tackling some of today’s most complex challenges. We draw on ideas and opinions from our staff associates and experts across different businesses. Click here to read more about Technology & Innovation, Infrastructure & Connectivity, and Design Leadership.

Beyond Technology: Surbana Jurong’s Digital Journey

Digital technologies such as Building Information Modeling (BIM), Machine Learning and Mixed Reality are set to disrupt the global construction sector over the next few years, raising productivity, boosting efficiency and providing better outcomes for clients. Businesses like Surbana Jurong (SJ) recognize that to succeed, industry must go beyond just introducing new technologies, and focus on changing traditional practices.

The global construction sector stands at the brink of exciting change; ripe for major digital disruption and with the opportunity to embrace new technologies that will transform productivity levels, modernize project delivery and bring the industry into the 21st Century.

Yet for many, this journey into unchartered territories will herald an era of uncertainty. To borrow a phrase from Charles Dickens’ classic The Tale of Two Cities, “It was the best of times, it was the worst of times…”

While the opportunity in terms of greater efficiency, customer service, safety and value for money is compelling, the challenge is monumental for an industry which has remained largely unchanged in the past 2,000 years.

Technology holds the key

In its latest report, Reinventing construction: A route to higher productivity, the McKinsey Global Institute highlights digitization as a key to unlocking a $1.6 trillion opportunity in the sector alone. Construction, it points out, continues to evolve at a “glacial pace”.

And as McKinsey’s December 2015 digitization index shows, when compared to all other industry sectors across the US, construction is rooted at or very near to the bottom when it comes to embracing the opportunities of digital technology. (see Exhibit 1 below).

Exhibit 1

While there is clear evidence that this slow start is holding back the sector, it does present a significant opportunity to disrupt from the status quo: for construction to move away from its traditional paper-based and labor-intensive practices, and benefit from the falling cost of technology, higher quality information and enhanced collaboration through better information sharing and visualization.

Business as usual is not enough

Regardless of the opportunities that can flow from new digitized working practices, navigating change on this scale requires fundamental review of the way companies operate and significant adjustment to the way staff think and work.

Success means putting in place strategies and resources to understand and master not only the technology required for change but also the cultural challenges that will be met along the way. A case in point has been the introduction of Building Information Modeling (BIM) technology to the sector. Despite significant benefits to productivity, companies have dragged their feet in implementing them, forcing governments to now make the use of BIM mandatory for submissions.

A different mindset and an open culture is clearly needed to break away from the norm.  Fundamentally, it is not about the technology itself, but rather how we change businesses operations to embrace the benefits that technology brings, and how we collaborate with one another as a result.

People connect the dots

SJ embarked on its own digital journey about a year ago. It has been an interesting journey not least because the organization has grown three-fold – by headcount and by revenue – and many more times in terms of business complexity.

Recognizing that people are at the core of our business, we chose a more people-centric approach to our digital transformation journey rather than adopting a pure technology-centric play. The idea was to engage the business units and bring them along, help them understand and experience the value of digital, thereby helping the organization to gain traction on its transformation. This was done through repeated engagement sessions, idea generation workshops and probing business units to share their clients’ and their biggest pain-points.

We also avoided creating an isolated team to develop new digital tools for the business on its own. Instead the innovation team works across the organization – creating a mindset that is essential to sustaining the digital journey and motivating people to embrace new ideas and come forward with more.

As we look back on this journey so far, three program design choices have made a clear difference to the success of our transformation:

Journeys, not solutions

As we established our digital plan together, we initially found ourselves focused on the technology – discussing what to implement, which tools were cutting edge, and how to apply them.

However, what really helped was to reverse this thinking, and start our transformation by looking at the journey of our customers. The goal was to understand the problems that needed to be solved so that our clients could have a more intuitive and engaging, yet more efficient approach to understand proposed designs and provide their inputs, and in the process significantly better experiences and outcomes.

We applied this approach to good effect, for example, when we introduced a Hololens design collaboration solution. Rather than simply using a new – admittedly ‘cool’ – devices just to view digital building models, we also sought to raise the quality of our design exchanges with our clients.

Once we understood the challenges, we could redesign our processes. Today, instead of using physical models and paper-based floorplans to explain designs at face to face meetings, which were time-consuming and tedious to follow up, we now conduct design walk-throughs in virtual environments, allowing colleagues and clients to join these design sessions from multiple locations around the world.

Thus, we did not just develop point solutions looking for problems, but came up with holistic ways to solve problems in which digital technologies and optimized processes offered our clients a better value proposition.

The technology brings our virtual design center capability to a new level and gives us the edge against our competitors. But it is also key to delivering a better client experience, at lower cost, and is completely aligned to our designers’ processes.

The outcome was a higher quality impact that was more easily embraced and “absorbed” by our business units and so was also more valued by clients.

Returns, not budget

Going digital can be costly, and we have found that traditional budget management methods fail to properly capture the value of the investment. This is particularly evident when we compare the risk/return profile of our innovation investment-driven business model to the current, traditional construction approach.

Yet, quantifying the return on investment in digital initiatives is a critical step and, while challenging, is crucial to understanding how to commercialize and capture the value of innovation before investment decisions are made.

For example, while scoping the use of digital tools to automate compliance checks for urban planning, the initial focus was on how to boost the productivity of our planning staff. Although technology allowed days of checking to be completed in minutes, it was soon clear that the payback period for recovering our investment in building this tool was still much longer than desired.

However, by widening the brief and using the tools to cross-sell checking services to clients we found a new revenue stream, and a new service model – a service with significantly higher revenue streams that eventually provided a reasonable return on the investment.

This additional value would almost certainly have been overlooked had the team focused only on getting the budget to build the tools.

Business units and innovation teams are now compelled to own their investment plans and think deeper about how to extract value from the innovation that flows.

Partner, don’t do it alone

When we launched our digital journey, partnership was a key pillar of our strategy. Rather than “re-invent the wheel” by investing in R&D which others had done, we wanted to partner with these organizations, their technologies and solutions, and only invest to build where it made sense.

Our new Building Information Modeling for Facilities Management (BIM:FM) digitized facilities management platform demonstrates this partnership strategy in action.

Digitizing the traditionally manpower intensive FM business has created a new sustainable business model for the future using powerful new digital technology to transform the way buildings are monitored and maintained.

But rather than build a system from scratch, our innovation team sought out and identified partners who could accelerate our development program. As a result, we estimate that our “time-to-market” has been brought forward by at least a year.

Being able to “jump start” programs and tap into the strengths of other organizations, helps to make our solutions better, but also gets them to market faster, to serve our clients better. Our innovation teams and business units are free to focus more effort on understanding clients’ needs and finding the right solutions.

Conclusion

Digital technology is already disrupting the entire global construction industry’s business model, and, as the old saying goes “if you’re not at the table, you’re on the menu”.

That means a business as usual approach, with a focus on technology alone, is insufficient. We must go beyond the traditional solutions to problems to consider journeys and outcomes; we must go beyond budgets to consider returns on investment.

We must reject silos and embrace collaboration to stay ahead, or risk being left behind in what will be the most exciting change ever witnessed in our sector.

Perspectives, developed by SJ Academy, is our platform to explore new ways of tackling some of today’s most complex challenges. We draw on ideas and opinions from our staff associates and experts across different businesses. Click here to read more about Technology & Innovation, Infrastructure & Connectivity, and Design Leadership.

How Technology Can Make Singapore A Car-lite Society

Modern cities are embracing new digital technologies, the power of data and artificial intelligence to wane populations off the car and onto a new range of more sustainable transport modes. Singapore is leading the way in this challenge with its new strategy to become “car-lite” by 2030.

Easy access to high quality and efficient transportation infrastructure already makes Singapore one of greatest cities in the world to live and work. But the desire to attract the best talent and businesses from around the world has prompted Singapore to embrace a new challenge to become “car-lite” and boost public transport use to globally leading levels.

Singapore currently boasts a public transport mode share of 66%. Policies such as the Vehicle Quota System (VQS) have been limiting the use of private cars since the 1990s and Singapore leaders understand that, in such a small state, the continuous construction of new road infrastructure is unsustainable.

Instead the population is being weaned off the car, and the transition to public transport use is underpinned by a programme of investment to improve public transport infrastructure. The government’s new target is to achieve a public transport mode share of 75% during peak hours by the year 2030.

However, despite substantial effort over many years, Singapore is still seen as being too car centric in comparison to cities like Hong Kong, which has an even higher public transport mode share of 88%. The challenge, therefore, is for Singapore to not only hit its existing targets but to also embrace new technology to accelerate the change towards a new “car-lite” future.

The new technology trends

Digital technology will be at the heart of this new “car-lite” future, a concept in which individual car ownership will disappear to make way for public transport and car use as a service. Advances in this technology, particularly around the application of Artificial Intelligence (AI), are set to revolutionise all aspects of life in the future, including transportation.

Transport is set to be one of the early winners from this technology revolution with autonomous vehicles (AV) now one of the most talked about products to be driven by AI. Technology giants Google, Tesla and Uber are already testing their fully automated vehicles, and smaller companies like nuTonomy and Delphi are now conducting their respective pilot tests in Singapore.  Singapore leaders predict that within 10 to 15 years the technology will be mature enough to be deployed widely[1].

The key to the use of AI technology across transportation will be dependent on “big data”, a concept which is already having a major impact on our lives as our consumer buying, browsing and movement trends are analysed and capitalised on. Singapore’s Committee on the Future Economy has already identified such data use as “an increasingly important source” for the future development of the economy.

These technologies will not only directly change our lives, but will also increasingly trigger new business models, as we embrace the sharing economy and use the power of data and communication technology to maximise the use of our infrastructure capacity.

China, for example, now plays a leading role in this new model as it starts to transform the sustainable development and lifestyles of its growing and urbanising population using the real time transport data and information which is now made publicly available across the nation’s cities. For example, mobile phone apps, driven by this publicly available live date, now enable dock-less bicycles to be found, unlocked and shared. In return, the enormous amounts of travel and behaviour data collected from these apps can be further analysed, helping cities to better understand travel patterns, and enabling resources to be planned and utilised more efficiently in future. This has helped communities to abandon cars and traffic jams and switch back to the low carbon bicycle transport culture that was commonplace in the last century.

Singapore’s transition to a car-lite society

Singapore expects to use similar technology to transform its society to a new “car-lite” model. Having started on the path to secure this future with investment in major new public transport schemes, it has already seen a significant drop in private car numbers this year, down to an eight-year low of just over 550,000.

However, the use of technology underpins the new strategic plans being implemented, and will see Singapore make a step change by 2030 to reduce this number even further.

Effective and forward-looking master planning is key to maximising the benefits of big data and technology. To achieve the “car-lite” model, the appropriate demand-supply balance of city must first be established.

A good example of this is the design of Singapore’s second Commercial Business District now under construction in the Jurong Lake District. A number of major government agencies such as BCA and LTA have already re-located there or are planning to move there, highlighting the way that, with appropriate public transport options, such de-centralized urban planning can reduce commuting times and distances, and so reduce the reliance on the private cars.

The use of big data is vital in the planning stage to help city planners understand and target the drivers for such changes in human behaviour in Singapore’s context, and to optimize the city structure accordingly. For example, Uber has already published point-to-point real-time travel time information which is aggregated from its huge database. As such information and data trends build up; it will be more and more useful for planning ahead over various time horizons.

An efficient and reliable public transport system

Providing good public transport links to connect people to these new developments not only drives people out of their cars but also creates the most efficient means to move people and achieves the lowest cost-per-capita. Singapore’s LTA targets to expand its rail network to about 360km by the year 2030 and to develop a more efficient and integrated bus system that aims to improve journey quality, such as improve waiting time and enable seamless transfers for the bus commuters.

New technology is set to improve the reliability of this vital public transport. For example, driverless buses are expected on the streets as early as 2020, to enhance the efficiency and reliability of the system, as well as improve the level of safety.

However, achieving last mile connectivity for public transport passengers – moving people between their homes or work places to main transport nodes such as MRT stations – continues to remain a challenge.

Similarly, active mobility is another sustainable solution for the “last mile” provided you can persuade people that walking or cycling is both safe and convenient.

This transition will start in Singapore with newly constructed footpaths and cycle paths along Bencoolen Street, with additional active mobility connections provided within Singapore’s central region. Three bike sharing service providers, Mobike, Ofo and Obike’s have been launched in Singapore, providing more convenient and cost-effective cycling options on Singapore’s streets. However, it is not without teething problems. There have been reports of indiscriminate parking in some areas, misuse of bikes, reckless riding, etc. To enable a sustainable ecosystem and bike sharing culture to take root as part of the Car-lite nation initiative in Singapore, bike-sharing operators, authorities and building owners, etc. will need to work out a practical framework to regulate (by merit or demerit systems) and establish the necessary bicycle infrastructure (designated bicycle parking zones, bicycle racks, etc.) in Singapore.

Conclusion

Digital technology is evolving at the fastest pace ever and is set to transform the way that we live, work and travel. While some fear that developments such as AI and big data will either replace humans one day or undermine our privacy, in fact they are key to securing our sustainable future and creating models such as a “car-lite” transport system.

As these technologies are deployed to serve global populations, communities will continue to evolve and adapt to the new opportunities as they are presented. By upgrading ourselves with this new knowledge, and by thinking globally and systematically, we can make our environment more car-lite, more sustainable and a more attractive place to live.

[1] “Can autonomous vehicles replace human-driven ones?” The Straits Times, 15 May 2017

 

Perspectives, developed by SJ Academy, is our platform to explore new ways of tackling some of today’s most complex challenges. We draw on ideas and opinions from our staff associates and experts across different businesses. Click here to read more about Technology & Innovation, Infrastructure & Connectivity, and Design Leadership.